
Walking on Data Words⋆

Amaldev Manuel, Anca Muscholl, Gabriele Puppis

LaBRI, University of Bordeaux, France

Abstract. We see data words as sequences of letters with additional
edges that connect pairs of positions carrying the same data value. We
consider a natural model of automaton walking on data words, called
Data Walking Automaton, and study its closure properties, expressive-
ness, and the complexity of paradigmatic problems. We prove that de-
terministic DWA are strictly included in non-deterministic DWA, that
the former subclass is closed under all boolean operations, and that the
latter class enjoys a decidable containment problem.

1 Introduction

Data words arose as a generalization of strings over finite alphabets, where the
term ‘data’ denotes the presence of elements from an infinite domain. Formally,
data words are modelled as finite sequences of elements chosen from a set of the
form Σ ×D, where Σ is a finite alphabet and D is an infinite alphabet. Elements
of Σ are called letters, while elements of D are called data values. Sets of data
words are called data languages.

It comes natural to investigate reasonable mechanisms (e.g., automata, log-
ics, algebras) for specifying languages of data words. Some desirable features of
such mechanisms are the decidability of the paradigmatic problems (i.e., empti-
ness, universality, containment) and effective closures of the recognized languages
under the usual boolean operations and projections. The often-used idea is to
enhance a finite state machine with data structures to provide some ability to
handle data values. Examples of these structures include registers to store data
values [5, 6], pebbles to mark positions in the data word [7], hash tables to store
partitions of the data domain [1]. In [4] the authors introduced the novel idea of
composing a finite state transducer and a finite state automaton to obtain a so-
called Data Automaton. Remarkably, the resulting class of automata captures
the data languages definable in two-variable first-order logic over data words.
For all models except Pebble Automata and Two-way Register Automata the
non-emptiness problem is decidable; universality and, by extension, equivalence
and inclusion problems are undecidable for all non-deterministic models.

In this work we consider data words as sequences of letters with additional
edges that connect pairs of positions carrying the same data value. This idea is

⋆ The research leading to these results has received funding from the ANR project
2010 BLAN 0202 01 FREC and from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n. 259454.

consistent with the fact that as far as a data word is concerned the actual data
value at a position is not relevant, but only the relative equality and disequality
of positions with respect to data values. It is also worth noting that none of the
above automaton models makes any distinction between permutations of the
data values inside data words. Our model of automaton, called Data Walking
Automaton, is naturally two-way: it can roughly be seen as a finite state device
whose head moves along successor and predecessor positions, as well as along
the edges that connect any position to the closest one having the same data
value, either to the right or to the left. Remarkably, emptiness, universality, and
containment problems are decidable for Data Walking Automata. Our automata
capture, up to letter-to-letter renamings, all data languages recognized by Data
Automata. The deterministic subclass of Data Walking Automata is shown to
be closed under all boolean operations (closure under complementation is not
immediate since the machines may loop). Finally, we deduce from results about
Tree Walking Automata [2, 3] that deterministic Data Walking Automata are
strictly less powerful than non-deterministic Data Walking Automata, which in
turn are subsumed by Data Automata.

2 Preliminaries

We use [n] to denote the subset {1, ..., n} of the natural numbers. Given a data
word w = (a1, d1) ... (an, dn), a class of w is a maximal set of positions with
identical data value. The set of classes of w forms a partition of the set of
positions and is naturally defined by the equivalence relation i ∼ j iff di = dj .

The global successor and global predecessor of a position i in a data word w
are the positions i+1 and i−1 (if they exist). The class successor of a position i
is the least position after i in its class (if it exists) and is denoted by i⊕ 1. The
class predecessor of a position i is the greatest position before i in its class (if it
exists) and is denoted by i⊖ 1. The global and class successors of a position are
collectively called successors, and similarly for the predecessors.

Using the above definitions we can identify any data word w ∈ (Σ ×D)∗ with
a directed graph whose vertices are the positions of w, each one labelled with
a letter from Σ, and whose edges are given by the successors and predecessor
functions +1, −1, ⊕1, ⊖1. This graph is represented in space Θ(∣w∣).
Local types. Given a data word w and a position i in it, we introduce local
types

ÐÐ→
typew(i) and

←ÐÐ
typew(i) to describe if each of the successors and predecessors

of i exist and whether they coincide. Formally, when considering the successors
of a position i, four scenarios are possible: (1) i is the rightmost position and
neither the global successor nor the class successor are defined (for short we

denote this by
ÐÐ→
typew(i) = max), (2) i is not the rightmost position, but it is the

greatest in its class, in which case the global successor exists but not the class
successor (

ÐÐ→
typew(i) = cmax), (3) both global and class successors of i are defined

and they coincide, i.e. i + 1 = i ⊕ 1 (
ÐÐ→
typew(i) = 1succ), or (4) both successors

of i are defined and they diverge, i.e. i + 1 ≠ i ⊕ 1 (
ÐÐ→
typew(i) = 2succ). We define

2

ÐÐÐ→
Types = {max, cmax,1succ,2succ} to be the set of possible right types of positions
of data words. The analogous scenarios for the predecessors of i are determined

by the left type
←ÐÐ
typew(i) ∈

←ÐÐÐ
Types = {min, cmin,1pred,2pred}. Finally, we define

typew(i) = (←ÐÐtypew(i),
ÐÐ→
typew(i)) ∈ Types =

←ÐÐÐ
Types ×

ÐÐÐ→
Types.

Class-Memory Automata. We depend on Data Automata [4] for our decid-
ability results. For convenience we use an equivalent model called Class-Memory
Automata [1]. Class-Memory Automata are finite state automata enhanced with
memory-functions from D to a fixed finite set [k]. On encountering a pair (a, d),
a transition is non-deterministically chosen from a set that may depend on the
current state of the automaton, the memory-value f(d), and the input letter a.
When a transition on (a, d) is executed, the current state and the memory-value
of d are updated. Below we give a formal definition of Class-Memory Automata
and observe that this model is similar to that of Tiling Automata [9].

A Class-Memory Automaton (CMA) is formally defined as a tuple A =
(Q,k,Σ,∆, I,F,K), where Q is the finite set of states, [k] is the set of memory-
values, Σ is the finite alphabet, ∆ ⊆ Q×Σ×({0}∪[k])×Q×[k] is the transition
relation, I ⊆ Q is the set of initial states, F ⊆ Q is the set of accepting states,
and K ⊆ [k] is the set of accepting memory-values. Configurations are pairs
(q, f), with q ∈ Q and f partial function from D to [k] (for the sake of brevity,
we write f(d) = 0 whenever f is undefined on d). Transitions are of the form

(q, f) (a,d)ÐÐ→ (q′, f ′), with (q, a, f(d), q′, h) ∈∆, f ′(d) = h, and f ′(e) = f(e) for all
e ∈ D∖{d}. Sequences of transitions are called runs. The initial configurations are
the pairs (q0, f0), with q0 ∈ I and f0(d) = 0 for all d ∈ D; the final configurations
are the pairs (q, f), with q ∈ F and f(d) ∈ {0} ∪K for all d ∈ D. The recognized
language L (A) contains all data words w = (a1, d1) ... (an, dn) ∈ (Σ×D)∗ that

admit runs of the form (q0, f0) (a1,d1)ÐÐ→ ... (an,dn)ÐÐ→ (qn, fn), starting in an initial
configuration and ending in a final configuration.

It is known that CMA-recognizable languages are effectively closed under
union, intersection, letter-to-letter renaming, but not under complementation.
Their emptiness problem is decidable and reduces to reachability in vector addi-
tion systems, which is not known to be of elementary complexity. Inclusion and
universality problems are undecidable. The following result, paired with closure
under intersection, allows us to assume that the information about local types
of positions of a data word is available to CMA:

Proposition 1 (Björklund and Schwentick [1]). Let L be the set of all data
words w ∈ (Σ ×Types ×D)∗ such that, for all positions i, w(i) = (a, τ, d) implies
τ = typew(i). The language L is recognized by a CMA.

Tiling Automata. We conclude this preliminary section by observing that
CMA are similar to the model of Tiling Automata on directed graphs [9], re-
stricted to a subclass of graphs, namely data words. We fix a finite set Γ of
colours to be used in tiles. Given a type τ = (�Ðτ ,Ð�τ) ∈ Types, a τ -tile associates
colours to each position and to its neighbours (as specified by the type). For in-
stance, a (1pred,2pred)-tile is a tuple of the form t = (γ0, γ−1, γ+1, γ⊕1) ∈ Γ 4 such

3

that, when associated to a position i in w with type typew(i) = (1pred,2pred),
implies that the colour of i is γ0, the colour of i− 1 (= i⊖ 1) is γ−1, the colour of
i+1 is γ+1, and the colour of i⊕1 is γ⊕1. A Tiling Automaton consists of a family
T = (Ta,τ)a∈Σ,τ∈Types of τ -tiles for each letter a ∈ Σ and each type τ ∈ Types. A
tiling by T of a data word w = (a1, d1) ... (an, dn) is a function w̃ ∶ [n] → Γ
such that, for all types τ and all positions i of type τ , the τ -tile that is formed
by i and its neighbours belongs to the set Tai,τ . The language recognized by the
Tiling Automaton T consists of all data words that admit a valid tiling by T .

The following result depends on the fact that CMA can compute the types of
the positions in a data word and is obtained by simple translations of automata:

Proposition 2. CMA and Tiling Automata on data words are equivalent.

3 Automata walking on data words

An automaton walking on data words is a finite state acceptor that processes a
data word by moving its head along the successors and predecessors of positions.
We let Axis = {0,+1,⊕1,−1,⊖1} be the set of the five possible directions of
navigation in a data word (0 stands for ‘stay in the current position’).

Definition 1. A Data Walking Automaton (DWA for short) is defined as a
tuple A = (Q,Σ,∆, I,F), where Q is the finite set of states, Σ is the finite
alphabet, ∆ ⊆ Q ×Σ × Types ×Q × Axis is the transition relation, I ⊆ Q is the
set of initial states, F ⊆ Q is the set of final states.

Let w = (a1, d1) ... (an, dn) ∈ (Σ × D)∗ be a data word. Given i ∈ [n] and
α ∈ Axis, we denote by α(i) the position that is reached from i by following
the axis α (for instance, if α = 0 then α(i) = i, if α = ⊕1 then α(i) = i ⊕ 1,
provided that i is not the last element in its class). A configuration of A is a
pair consisting of a state q ∈ Q and a position i ∈ [n]. A transition is a tuple

of the form (p, i) wÐÐ→ (q, j) such that (p, ai, τ, q, α) ∈ ∆, with τ = typew(i)
and j = α(i). The initial configurations are the pairs (q0, i0), with q0 ∈ I and
i0 = 1. The halting configurations are those pairs (q, i) on which no transition is
enabled; such configurations are said to be final if q ∈ F . The language L (A)
recognized by A is the set of all data words w ∈ (Σ ×D)∗ that admit a run of A
that starts in an initial configuration and halts in a final configuration.

We will also consider deterministic versions of DWA, in which the set I of
initial states is a singleton and the transition relation ∆ can be seen as a partial
function from Q ×Σ ×Types to Q ×Axis.

Example 1. Let L1 be the set of all data words that contain at most one oc-
currence of each data value (this language is equally defined by the formula
∀x∀y x ∼ y → x = y). A deterministic DWA can recognize L1 by reading the
input data word from left to right (along axis +1) and by checking that all po-
sitions except the last one have type (cmin, cmax). When a position with type
(cmin,max) or (min,max) is reached, the machine halts in an accepting state.

4

Example 2. Let L2 be the set of all data words in which every occurrence of a is
followed by an occurrence of b in the same class (this is expressed by the formula
∀x a(x) → ∃y b(y) ∧ x < y ∧ x ∼ y). A deterministic DWA can recognize L2 by
scanning the input data word along the axis +1. On each position i with left type
cmin, the machine starts a sub-computation that scans the entire class of i along
the axis ⊕1, and verifies that every a is followed by a b. The sub-computation
terminates when a position with right type cmax is reached, after which the
machines traverses back the class, up to the position i with left type cmin, and
then resumes the main computation from the successor i + 1. Intuitively, the
automaton traverses the data word from left to right in a ‘class-first’ manner.

Example 3. Our last example deals with the set L3 of all data words in which
every occurrence of a is followed by an occurrence of b that is not in the same
class (this is expressed by the formula ∀x a(x) → ∃y b(y) ∧ x < y ∧ x ≁ y).
This language is recognized by a deterministic DWA, although not in an obvious
way. Fix a data word w. It is easy to see that w ∈ L3 iff one following cases holds:

1. there is no occurrence of a in w,

2. w contains a rightmost occurrence of b, say in position `b, and all occurrences
of a are before `b; in addition, we require that either the class of `b does not
contain an a, or the class of `b contains a rightmost occurrence of a, say in
position `a, and another b appears after `a but outside the class of `b.

It is easy to construct a deterministic DWA that verifies the first case. We show
how to verify the second case. For this, the automaton reaches the rightmost
position ∣w∣ and searches backward, following the axis −1, the first occurrence
of b: this puts the head of the automaton in position `b. From position `b the
automaton searches along the axis ⊖1 an occurrence of a. If no occurrence of a
is found before seeing the left type cmin, then the automaton halts by accepting.
Otherwise, as soon as a is seen (necessarily at position `a), a second phase starts
that tries to find another occurrence of b after `a and outside the class of `b (we
call such an occurrence a b-witness). To do this, the automaton moves along the
axis +1 until it sees a b, say at position i. After that, it scans the class of i along
the axis ⊕1. If the right type cmax is seen before b, this means that the class
of i does not contain a b: in this case, the automaton goes back to position i
(which is now the first position along axis ⊖1 that contains a b) and accepts iff
b is seen along axis +1 (thanks to the previous test, that occurrence of b must
be outside the class of `b and hence a b-witness). Otherwise, if a b is seen in
position j before the right type cmax, this means that the class of i contains a
b: in this case, the automaton backtracks to position i and resumes the search
for another occurrence of b to the right of i (note that if i is a b-witness, then j
is also a b-witness, which will be eventually processed by the automaton).

Closure properties. Closure of non-deterministic DWA under union is easily
shown by taking a disjoint union of the state space of the two automata. Closure
under intersection is shown by assuming that one of the two automata accepts
only by halting in the leftmost position and by coupling its final states with the
initial states of the other automaton.

5

Closure properties for deterministic DWA rely on the fact that one can re-
move loops from deterministic computations. The proof of the following result
is an adaptation of Sipser’s construction for eliminating loops on configurations
of deterministic space-bounded Turing machines [8].

Proposition 3. Given a deterministic DWA A, one can construct a determin-
istic DWA A′ equivalent to A that always halts.

Proposition 4. Non-deterministic DWA are effectively closed under union and
intersection. Deterministic DWA are effectively closed under union, intersection,
and complementation.

4 Deterministic vs non-deterministic DWA

We aim at proving the following separation results:

Theorem 1. There exist data languages recognized by non-deterministic DWA
that cannot be recognized by deterministic DWA. There also exist data languages
recognized by CMA that cannot be recognized by non-deterministic DWA.

Intuitively, the proof of the theorem exploits the fact that one can encode
binary trees by suitable data words and think of deterministic DWA (resp. non-
deterministic DWA, CMA) as deterministic Tree Walking Automata (resp. non-
deterministic Tree Walking Automata, classical bottom-up tree automata). One
can then use the results from [2, 3] that show that (i) Tree Walking Automata
cannot be determinized and (ii) Tree Walking Automata, even non-deterministic
ones, cannot recognize all regular tree languages. We develop these ideas below.

Encodings of trees. Hereafter we use the term ‘tree’ (resp. ‘forest’) to denote
a generic finite tree (resp. forest) where each node is labelled with a symbol from
a finite alphabet Σ and has either 0 or 2 children. To encode trees/forests by
data words, we will represent the node-to-left-child and the node-to-right-child
relationships via the predecessor functions ⊖1 and −1, respectively. In particular,
a leaf will correspond to a position of the data word with no class predecessor,
an internal node will correspond to a position where both class and global pre-
decessors are defined (and are distinct), and a root will be represented either by
the rightmost position in the word or by a position with no class successor that
is immediately followed by a position with no class predecessor. As an example,
given pairwise different data values d, e, f, g, the complete binary tree of height
2 can be encoded by the following data word:

w = d e d f g f d

(to ease the understanding of the example, we drew only the instances of the
predecessor functions ⊖1 and −1 that represent left and right edges of the tree).

A formal definition of encoding of a tree/forest follows:

6

Definition 2. We say that a data word w ∈ (Σ×D)+ is a forest encoding if there

is no position i such that
←ÐÐ
typew(i) = 1pred and no pair of consecutive positions i

and i + 1 such that
ÐÐ→
typew(i) = 2succ ∧ ←ÐÐtypew(i + 1) = 2pred.

Given a forest encoding w, we denote by forest(w) the directed binary forest
that has for nodes the positions of w, labelled over Σ, and such that:

� if
←ÐÐ
typew(i) ∈ {min, cmin}, then i is a leaf in forest(w),

� if
←ÐÐ
typew(i) = 2pred, then i⊖ 1 and i − 1 are left and right children of i,

� if
ÐÐ→
typew(i) = max or

ÐÐ→
typew(i) = cmax ∧ ←ÐÐtypew(i + 1) = cmin, then i is a root

(forest(w) is clearly an acyclic directed graph; the fact that each node i has at
most one parent follows from a case distinction based on the types of i and i+1).

We let tree(w) = forest(w) if the forest encoded by w contains a single root,
namely, it is a tree, otherwise, we let tree(w) be undefined.

We remark that there exist several encodings of the same tree/forest that
are not isomorphic even up to permutations of the data values. For instance, the
two data words below encode the same complete binary tree of height 2:

w = d e d f g f d w′ = d f e d g f d

Among all possible encodings of a tree/forest, we identify special ones, called
canonical encodings, in which the nodes are listed following the post-order visit.
Each tree t has a unique canonical encoding up to permutations of the data
values, which we denote by enc(t).
Separations of tree automata. We briefly recall the definition of a tree
walking automaton and the separation results from [2, 3]. In a way similar
to DWA, we first introduce local types of nodes inside trees. These can be
seen as pairs of labels from the finite sets Types↓ = {leaf, internal} and Types↑ =
{root, leftchild, rightchild}, and they allow us to distinguish between a leaf and
an internal node as well as between a root, a left child, and a right child. We
envisage a set TAxis = {0, ↑,↙,↘} of four navigational directions inside a tree: 0
is for staying in the current node, ↑ is for moving to the parent, ↙ is for moving
to the left child, and ↘ is for moving to the right child. A non-deterministic Tree
Walking Automaton (TWA) is a tuple A = (Q,Σ,∆, I,F), where Σ is the finite
alphabet, Q is the final set of states, ∆ ⊆ Q ×Σ × Types↓ × Types↑ ×Q × TAxis
is the transition relation, and I,F ⊆ Q are the sets of initial and final states.
Runs of these automata are defined in a way similar to the runs of DWA. The
sub-class of deterministic TWA is obtained by replacing the transition relation
∆ with a partial function from Q×Σ×Types↓×Types↑ to Q×TAxis and by letting
I consist of a single initial state q0.

Theorem 2 (Bojanczyk and Colcombet [2, 3]). There exist languages rec-
ognized by non-deterministic TWA that cannot be recognized by deterministic
TWA. There also exist regular languages of trees that cannot be recognized by
non-deterministic TWA.

7

Translations between TWA and DWA. Hereafter, given a tree language L,
we define Lenc to be the language of all data words that encode (possibly in a
non-canonical way) trees in L, that is, Lenc = {w ∶ tree(w) ∈ L}. To derive
from Theorem 2 analogous separation results for data languages, we provide
translations between TWA and DWA, as well as from tree automata to CMA:

Lemma 1. Given a deterministic (resp. non-deterministic) TWA A recognizing
L, one can construct a deterministic (resp. non-deterministic) DWA Aenc rec-
ognizing Lenc. Conversely, given a deterministic (resp. non-deterministic) DWA
A, one can construct a deterministic (resp. non-deterministic) TWA Atree such
that, for all trees t, Atree accepts t iff A accepts the canonical encoding enc(t).

The proof of the first claim is almost straightforward: the DWA Aenc is ob-
tained by first transforming A into a DWA A′ that mimics A when the input is
a valid encoding of a tree, and then intersecting A′ with a deterministic DWA
U that accepts all and only the valid encodings of trees. For the proof of the
second claim, we observe that the navigational power of a DWA is generally
greater than that of a TWA: when the input is a non-canonical encoding of a
tree, a DWA may choose to move from a position i to the position i + 1 even if
i does not represent a right child; on the other hand, a TWA is only allowed to
move from node i to node i + 1 when the former is a right child of the latter.
Nonetheless, when restricting to canonical encodings of trees, the successor i+ 1
of a position represents the node that immediately follows i in the post-order
visit of the tree; in this case, any move of a DWA from i to i+1 can be mimicked
by a maximal sequence of TWA moves of the form ↑↘↙ ... ↙.

Lemma 2. Given a tree automaton A recognizing a regular language L, one can
construct a CMA Aenc recognizing Lenc.

We are now ready to transfer the separation results to data languages:

Proof (of Theorem 1). Let L1 be a language recognized by a non-deterministic
TWA A1 that cannot be recognized by deterministic TWA (cf. first claim of
Theorem 2). Using the first claim of Lemma 1, we construct a non-deterministic
DWA Aenc

1 such that L (Aenc
1) = Lenc

1 . Suppose by way of contradiction that
there is a deterministic DWA B1 that also recognizes Lenc

1 . We apply the second
claim of Lemma 1 and we obtain a deterministic TWA Btree1 that accepts all
and only the trees whose canonical encodings are accepted by B1. Since Lenc

1 =
{w ∶ tree(w) ∈ L1} is invariant under equivalent encodings of trees (that is,
w ∈ Lenc

1 iff w′ ∈ Lenc
1 whenever tree(w) = tree(w′)), we have that t ∈ L1 iff

enc(t) ∈ Lenc
1 , iff t ∈ L (Btree1). We have just shown that the deterministic TWA

Btree1 recognizes the language L1, which contradicts the assumption on L1.
By applying similar arguments to a regular tree language L2 that is not

recognizable by non-deterministic TWA (cf. second claim of Theorem 2), one
can separate CMA from non-deterministic DWA. ◻

We conclude by observing that if non-deterministic TWA were not closed
under complementation, as one would reasonably expect, then, by Lemma 1,
non-deterministic DWA would not be closed under complementation either.

8

5 Decision problems on DWA

We analyse in detail the complexity of the decision problems on DWA. We
start by considering the simpler acceptance problem, which consists of deciding
whether w ∈ L (A) for a given a DWA A and data word w. Subsequently, we
move to the emptiness and universality problems, which consist of deciding,
respectively, whether a given DWA accepts at least one data word and whether
a given DWA accepts all data words. We will show that these problems are
decidable, as well as the more general problems of containment and equivalence.

Acceptance. Compared to other classes of automata on data words (e.g. CMA,
Register Automata), deterministic DWA enjoy an acceptance problem of very
low time/space complexity, and the problem does not get much worse if we
consider non-deterministic DWA:

Proposition 5. The acceptance problem for a deterministic DWA A and a data
word w is decidable in time O(∣w∣⋅∣A∣) and is Logspace-complete under NC1 re-
ductions. The acceptance problem for a non-deterministic DWA is NLogspace-
complete.

Emptiness. We start by reducing the emptiness of CMA to the emptiness of
deterministic DWA (or, equivalently, to universality of deterministic DWA). For
this purpose, it is convenient to think of a CMA A as a Tiling Automaton over
a finite set Γ of colours and accordingly identify the set of all runs of A with
the set Tilings(A) ⊆ (Σ ×Γ ×D)∗ of all valid tilings of data words. Given a data
word w̃ ∈ (Σ × Γ × D)∗, checking whether w̃ belongs to Tilings(A) reduces to
checking constraints on neighbourhoods of positions. Since this can be done by
a deterministic DWA, we get the following result:

Proposition 6. Given a CMA A, one can construct a deterministic DWA Atiling

that recognizes the data language Tilings(A).

Two important corollaries follow from this observation:

Corollary 1. Data languages recognized by CMA are projections of data lan-
guages recognized by deterministic DWA.

Corollary 2. Emptiness and universality of deterministic DWA is at least as
hard as emptiness of CMA, which in turn is equivalent to reachability in VASS.

We turn now to showing that languages recognized by non-deterministic
DWA are also recognized by CMA, and hence emptiness of DWA is reducible to
emptiness of CMA. Let A = (Q,Σ,∆, I,F) be a non-deterministic DWA. With-
out loss of generality, we can assume that A has a single initial state q0 and a
single final state qf . We can also assume that whenever A accepts a data word
w, it does so by halting in the rightmost position of w. For the sake of brevity,
given a transition δ = (p, a, τ, q, α) ∈ ∆, we define source(δ) = p, target(δ) = q,
letter(δ) = a, type(δ) = τ , and reach(δ) = α. Below, we introduce the concept
of min-flow, which can be thought of as a special form of tiling that witnesses
acceptance of a data word w by A.

9

Definition 3. Let w = (a1, d1) ... (an, dn) be a data word of length n. A
min-flow on w is any map µ ∶ [n]→ 2∆ that satisfies the following conditions:

1. There is a transition δ ∈ µ(1) such that source(δ) = q0;

2. There is a transition δ ∈ µ(n) such that target(δ) = qf ;

3. For all positions i ∈ [n], if δ ∈ µ(i), then letter(δ) = ai and type(δ) = typew(i);

4. For each i ∈ [n] and each q ∈ Q, there is at most one transition δ ∈ µ(i) such
that source(δ) = q;

5. For each i ∈ [n] and each q ∈ Q, there is at most one position j ∈ [n] for
which there is δ ∈ µ(j) such that target(δ) = q and i = reach(δ)(j);

6. For each i ∈ [n], let exiting(i) be the set of all states of the form source(δ)
for some δ ∈ µ(i); similarly, let entering(i) be the set of all states of the form
target(δ) for some δ ∈ µ(j) and some j ∈ [n] such that i = reach(δ)(j); our
last condition states that for all positions i ∈ [n],
(a) if i = 1, then entering(i) = exiting(i) ∖ {q0},

(b) if i = n, then exiting(i) = entering(i) ∖ {qf},

(c) otherwise, exiting(i) = entering(i).

Lemma 3. A accepts w iff there is a min-flow µ on w.

Proof. Let w = (a1, d1)...(an, dn) be a data word of length n and let ρ be a suc-

cessful run of A on w of the form (q0, i0) wÐÐ→(q1, i1) wÐÐ→...(qm, im) obtained by
the sequence of transitions δ1, ..., δm. Without loss of generality, we can assume
that no position in ρ is visited twice with the same state (indeed, if ik = ih and
qk = qh for different indices k, h, ρ would contain a loop that could be eliminated
without affecting acceptance). We associate with each position i ∈ [n] the set
µ(i) = {δk ∶ 1 ≤ k ≤m, ik = i}. One can easily verify that µ is a min-flow on w.

For the other direction, we assume that there is a min-flow µ on w. We con-
struct the edge-labelled graph Gµ with vertices in Q× [n] and edges of the form
((p, i), (q, j)) labelled by a transition δ, where i ∈ [n], δ ∈ µ(i), p = source(δ),
q = target(δ), and j = reach(δ)(i). By construction, every vertex of Gµ has the
same in-degree as the out-degree (either 0 or 1), with the only exceptions be-
ing the vertex (q0,1) of in-degree 0 and out-degree 1, and the vertex (qf , n) of
in-degree 1 and out-degree 0. One way to construct a successful run of A on w
is to repeatedly choose the only vertex x in Gµ with in-degree 0 and out-degree
1, execute the transition δ that labels the only edge departing from x, and re-
move that edge from Gµ. This procedure terminates when no edge of Gµ can be
removed and it produces a successful run on w. ◻

Since min-flows are special forms of tilings, CMA can guess them and hence:

Theorem 3. Given a DWA, one can construct an equivalent CMA.

Universality. Here we show that the complement of the language recognized by
a DWA is also recognized by a CMA, and hence universality of DWA is reducible
to emptiness of CMA. As usual, we fix a DWA A = (Q,Σ,∆, I,F), with I = {q0}

10

and F = {qf}, and we assume that A halts only on rightmost positions. Below
we define max-flows, which, dually to min-flows, can be seen as a special forms
of tilings witnessing non-acceptance.

Definition 4. Let w = (a1, d1) ... (an, dn) be a data word of length n. A
max-flow on w is any map ν ∶ [n]→ 2Q that satisfies the following conditions:

1. q0 ∈ ν(1) and qf /∈ ν(n),

2. for all positions i ∈ [n] and all transitions δ ∈ ∆, if source(δ) ∈ ν(i),
letter(δ) = ai, and type(δ) = typew(i), then target(δ) ∈ νreach(δ)(i).

Lemma 4. A rejects w iff there is a max-flow ν on w.

Theorem 4. Given a non-deterministic DWA A recognizing L, one can con-
struct a CMA A′ that recognizes the complement of L.

Containment and other problems. We conclude by mentioning a few inter-
esting decidability results that follow directly from Theorems 3 and 4 and from
the closure properties of CMA under union and intersection. The first result
concerns the decidability of containment/equivalence of DWA. The second re-
sult concerns the property of language of being invariant under tree encodings,
namely, of being of the form Lenc for some language L of trees.

Corollary 3. Given two non-deterministic DWA A and B, one can decide whether
L (A) ⊆ L (B).

Corollary 4. Given a non-deterministic DWA A, one can decide whether L (A)
is invariant under tree encodings.

6 Discussion

We showed that the model of walking automaton can be adapted to data words
in order to define robust families of data languages. We studied the complexity
of the fundamental problems of word acceptance, emptiness, universality, and
containment (quite remarkably, all these problems are shown to be decidable).
We also analysed the relative expressive power of the deterministic and non-
deterministic models of Data Walking Automata, comparing them with other
classes of automata appeared in the literature (most notably, Data Automata
and Class-Memory Automata). In this respect, we proved that deterministic
DWA, non-deterministic DWA, and CMA form a strictly increasing hierarchy of
data languages, where the top ones are projections of the bottom ones.

It follows from our results that DWA satisfy properties analogous to those
satisfied by Tree Walking Automata – for instance deterministic DWA, like de-
terministic TWA, are effectively closed under under all boolean operations, and
are strictly less expressive than non-deterministic DWA. It turns out that DWA
are also incomparable with one-way Register Automata [5]: on the one hand,
DWA can check that all data values are distinct, whereas Register Automata

11

cannot; on the other hand, Register Automata can recognize languages of data
strings that do not encode valid runs of Turing machines, while Data Walking
Automata cannot, as otherwise universality would become undecidable.

Since moving along the axis ⊕1 (resp. ⊖1) can be simulated by storing the
current data value or putting a pebble at the current position and moving along
the axis +1 (resp. −1) searching for the nearest position with the stored data value
or marked data value, it follows that DWA are subsumed by two-way 1-Register
Automata and 2-Pebble Automata (note that in Pebble Automata one pebble is
always used by the head). Other variants of DWA could have been considered,
for instance, by adding registers, pebbles, alternation, or nesting. Unfortunately,
none of these extensions yield a decidable containment problem. For instance,
equipping DWA with a single pebble would enable encoding positive instances
of the Post Correspondence Problem, thus implying undecidability of emptiness.

We leave open the following problems:

� Are non-deterministic DWA closed under complementation? (a similar sep-
aration result remains open for Tree Walking Automata [2, 3]).

� Do DWA capture all languages definable by two-variable first-order formulas
using the predicates < and ∼.

As a matter of fact, we can easily show that DWA capture FO2 logic with pred-
icates +1 and ⊕1 (the proof relies on a variant of Gaifman’s locality theorem).

Acknowledgments. The first author thanks Thomas Colcombet for detailed
discussions and acknowledges that some of the ideas were inspired during these.
The second author acknowledges Miko laj Bojańczyk and Thomas Schwentick for
discussions about the relationship between DWA and Data Automata.

References

[1] H. Björklund and T. Schwentick. On notions of regularity for data languages.
Theoretical Computer Science, 411(4-5):702–715, 2010.

[2] M. Bojańczyk and T. Colcombet. Tree-walking automata cannot be determinized.
Theoretical Computer Science, 350(2-3):164–173, 2006.

[3] M. Bojańczyk and T. Colcombet. Tree-walking automata do not recognize all
regular languages. SIAM Journal, 38(2):658–701, 2008.

[4] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable
logic on data words. ACM Transactions on Computational Logic, 12(4):27, 2011.

[5] M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

[6] L. Libkin and D. Vrgoc. Regular expressions for data words. In LPAR, volume
7180 of LNCS, pages 274–288. Springer, 2012.

[7] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.

[8] M. Sipser. Halting space-bounded computations. Theoretical Computer Science,
10:335–338, 1980.

[9] W. Thomas. Elements of an automata theory over partial orders. In Partial Order
Methods in Verification, pages 25–40. Americal Mathematical Society, 1997.

12

	Walking on Data Words

